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SSPX is operating routinely now

One year ago
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The SSPX Spheromak: sustainment + flexible geometry

l Conformal solid copper flux
conserver minimizes dissipation.

l Improved injector and magnetic
configuration (bias coils).

l Tungsten coating to reduce
sputtering.

l Plasma minor radius of 0.23m.

l 450kA peak injector current,
up to 300kA sustaining current
(2msec).

l Expected peak Itor @ 1.2 MA
(0.5MA to date), with Btor £ 2 T.
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SSPX plasma is formed using Coaxial Injection

l Coaxial electrodes with radial DC
magnetic field, Bradial , across the gap.

l Gas puff and HV between electrodes
causes breakdown

l Current down central electrode
produces toroidal field,

l  Jr ´ Btor force pushes plasma down
injector and into flux conserver if
sufficient pressure to bend radial field
lines.

l Reconnection at throat leaves toroidal
spheromak plasma inside flux
conserver with poloidal and toroidal
fields and currents.
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1. Magnetic field

2. Hydrogen gas puff

3. High voltage breakdown

5. Initial plasma expansion

6. Sustained spheromak plasma

4. Injector plasma acceleration
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Typical SSPX discharge with formation bank.

l Poloidal field builds until bank
voltage drops.

l Density during decay is about
3´1014cm- 3 for this pulse with
Ti gettering.

l Power balance between ohmic
input and radiation loss sets a
minimum J/n for burn-through.

l Best estimate suggests that we
need to lower density about
factor of four.  See poster by
McLean
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Spheromak Formation Threshold Agrees
with Predictions if not Overdriven

¥ Ejection thresholds can then be calculated
from:
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where the Ithresh is determined at the time of
steep rise of Vinj.
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CORSICA models magnetic probe data to obtain
spheromak parameters

l During buildup to 500kA, l=j/B constant on closed field lines and about
twice that on the open field lines connecting the electrodes.

l Internal measurements needed to nail down current profile.
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Transient Internal Probe provides BT profiles

l Collaboration with U. Washington (grad student on site)

l Measure Faraday rotation of laser light in a high speed bullet as it transits
plasma tangent to
magnetic axis in 250msec.

l BT(r) gives internal data
 needed to reconstruct
current profile.

l Can also record
magnetic fluctuations

see poster by Holcomb
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During decay, the spheromak quickly reaches a
relaxed state. For shot 1822 at t=475µs, the
plasma fields fit well to a CORSICA equilibrium
with a flat l-profile.  The form of the internal
field gives good agreement with the BFM
(above), also determined for a  current of
~300kA.  Minor differences can be seen in he
edge poloidal field.

During decay phase, fields match Taylor relaxed state
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The Bessel function model is a good model
for the relaxed state, describing the field
configurations with a single constant: l -
defined by the geometry of the configuration.
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VUV Spectra show Carbon is main radiator
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Calculated impurity emissivity

l Impurity content should be reduced by improved GDC, Ti gettering,
and possibly the removal of some of the tungsten coating on the flux
conserver.
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Longer decay times observed with
improved wall conditioning (Titanium gettering)

50 µm

Plasma-sprayed W coating on FC

Surface porosity may be an issue

D. Buchenauer, SNL
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Bias coils will modify the formation process and should
also allow more efficient injection

Primary injector
flux solenoid (on)
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l With bias coils, vacuum field lines pass
through flux conserver

– field errors minimized

– reduced losses in the injector

– utilizes larger fraction of initial flux,
which increases drive efficiency

– threshold set by kink stability of
central column

l Bias coils have been built and will be
installed this summer

– Two internal coil assemblies

– Two external coil assemblies

– Power supplies installed
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Preliminary experiments with a partial flux core
yield better spheromak plasmas

¥ Gain in efficiency due to
increase in flux drawn from
gun:
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modified flux
configuration
the separatrix
lies further up
in the gun
indicating that
most of the
programmed
flux is drawn
out into FC

¥ Drawing more flux into FC
leads to higher Ôhelicity
injectionÕ rate:

ÇK Vinj inj= 2 y

¥ Longest field-decay times
found for this mode of operation:
~twice those obtained for
standard flux-config.; indicates
higher temperatures.
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Coaxial injection is more efficient for partial flux core
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l Stored energy calculated by CORSICA using external magnetics data.

l Partial flux core configuration is improved, but still leaves more than half of
flux in the injector region.
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Helicity balance or energy balance give similar results
for extrapolation to operation with sustainment bank
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l Data from partial flux core operation

l Results sensitive to estimated decay times (Te) for helicity (or magnetic
energy) see poster by Stallard
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SSPX Facility Supports a National Spheromak Program

l Direct Funding to university groups supports students and scientists:

– UC Davis and University of Washington for diagnostic development

– UC Berkeley for reactor studies and power balance measurements

l Other Labs and Universities also participate in the SSPX program

– Wisconsin with spectroscopy and Thomson procurement from GA

– LANL with diagnostics and particle balance studies ($200k in FY00)

– SNL with wall conditioning and surface physics (~0.5FTE)

– NIMROD consortium (SAIC, LANL, Wisc., GA, etc.) does 3-d MHD

– Himeji Institute of Technology (Japan) with ion Doppler measurements

l Remote Site capability will facilitate off-site collaborations

– Other groups can participate effectively in experiments with little travel.

– Improved capability from the VTL community proposals on Info. Tech.
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Theory support is an important program element

l General theory support on injection physics
– Threshold and formation physics, fluctuation analysis (e.g. USPR)
– Operation simulation and reconstruction (CORSICA)

– UEDGE simulation of injector and edge plasma

l Realistic prediction of the formation and sustainment of the spheromak
requires 3-d, time-dependent, nonlinear resistive MHD simulations

l We are using the NIMROD code (Sovinec, et al., LANL, and Schnack, SAIC).

see poster by B.I. Cohen
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Summary

l The SSPX spheromak is operating reliably

– Reproducible discharges over full range of injector design parameters
– Formation threshold consistent with coaxial injector geometry
– Te is low: improving wall conditioning to reduce recycling and impurity

content, and adding bias coils to increase injection efficiency

– Buildup limited by pulse length; very close to having sustainment bank
– Steadily improving diagnostic suite: SPRED, CO2, USPR, PTS, and TIP

l The SSPX facility at LLNL provides national capability for studying
spheromak physics and testing new configurations


